Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Air permeability"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
[Korean]
Fabrication and Mechanical Properties of STS316L Porous Metal for Vacuum Injection Mold
Se Hoon Kim, Sang Min Kim, Sang Ho Noh, Jin Pyeong Kim, Jae Hyuck Shin, Si-Young Sung, Jin Kwang Jin, Taean Kim
J Korean Powder Metall Inst. 2015;22(3):197-202.   Published online June 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.3.197
  • 423 View
  • 2 Download
  • 2 Citations
AbstractAbstract PDF

In this study, porous stainless steel (STS316L) sintered body was fabricated by powder metallurgy method and its properties such as porosity, compressive yield strength, hardness, and permeability were evaluated. 67.5Fe-17Cr- 13Ni-2.5Mo (wt%) powder was produced by a water atomization. The atomized powder was classified into size with under 45 μm and over 180 μm, and then they were compacted with various pressures and sintered at 1210°C for 1 h in a vacuum atmosphere. The porosities of sintered bodies could be obtained in range of 20~53% by controlling the compaction pressure. Compressive yield strength and hardness were achieved up to 268 MPa and 94 Shore D, respectively. Air permeability was obtained up to 79 l/min·cm2. As a result, mechanical properties and air permeability of the optimized porous body having a porosity of 25~40% were very superior to that of Al alloy.

Citations

Citations to this article as recorded by  
  • Printability and physical properties of iron slag powder composites using material extrusion-based 3D printing
    Hyungjin Kim, Sangkyu Lee
    Journal of Iron and Steel Research International.2021; 28(1): 111.     CrossRef
  • Study on Effects of Mold Temperature on the Injection Molded Article
    J.-H. Han, Y.-C. Kim
    Archives of Metallurgy and Materials.2017; 62(2): 1271.     CrossRef
Article image
[English]
Fabrication and Pore Characteristics of Cu Foam by Slurry Coating Process
Dahee Park, Eun-Mi Jung, Sangsun Yang, Jung-Yeul Yun
J Korean Powder Metall Inst. 2015;22(2):87-92.   Published online April 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.2.87
  • 444 View
  • 3 Download
  • 1 Citations
AbstractAbstract PDF

Metallic porous materials have many interesting combinations of physical and geometrical properties with very low specific weight or high gas permeability. In this study, highly porous Cu foam is successfully fabricated by a slurry coating process. The Cu foam is fabricated specifically by changing the coating amount and the type of polyurethane foam used as a template. The processing parameters and pore characteristics are observed to identify the key parameters of the slurry coating process and the optimized morphological properties of the Cu foam. The pore characteristics of Cu foam are investigated by scanning electron micrographs and micro-CT analyzer, and air permeability of the Cu foam is measured by capillary flow porometer. We confirmed that the characteristics of Cu foam can be easily controlled in the slurry coating process by changing the microstructure, porosity, pore size, strut thickness, and the cell size. It can be considered that the fabricated Cu foams show tremendous promise for industrial application.

Citations

Citations to this article as recorded by  
  • Preparation and comparative evolution of mechanical behavior of Fe and Fe2O3 foams and their polymer composites
    Vemoori Raju, Roy Johnson, Asit Kumar Khanra
    Journal of Alloys and Compounds.2018; 750: 71.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP