Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Yong-Sung Goo"
Filter
Filter
Article category
Keywords
Publication year
Authors
Article
Article image
[Korean]
Investigation on Microstructure and Electrical Properties of Silver Conductive Features Using a Powder Composed of Silver nanoparticles and Nanoplatelets
Yong-Sung Goo, Yong-Ho Choa, Young Hwangbo, Young-In Lee
J Korean Powder Metall Inst. 2016;23(5):358-363.   Published online October 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.5.358
  • 208 View
  • 2 Download
AbstractAbstract PDF

Noncontact direct-printed conductive silver patterns with an enhanced electrical resistivity are fabricated using a silver ink with a mixture of silver nanoparticles and nanoplates. The microstructure and electrical resistivity of the silver pattern are systematically investigated as a function of the mixing ratio of the nanoparticles and nanoplates. The pattern, which is fabricated using a mixture with a mixing ratio of 3(nanoparticles):7(nanoplates) and sintered at 200°C shows a highly dense and well-sintered microstructure and has a resistivity of 7.60 μΩ·cm. This originates a mutual synergistic effect through a combination of the sinterability of the nanoparticles and the packing ability of the nanoplates. This is a conductive material that can be used to fabricate noncontact direct-printed conductive patterns with excellent electrical conductivity for various flexible electronics applications, including solar cells, displays, RFIDs, and sensors.

Article image
[Korean]
Research on Synthesis and Sintering Behavior of Nano-sized (Pb, La)TiO3 Powders Using Mechano Chemical Process
Young-In Lee, Yong-Sung Goo, Jong-Sik Lee, Yong-Ho Choa
J Korean Powder Metall Inst. 2010;17(2):101-106.
DOI: https://doi.org/10.4150/KPMI.2010.17.2.101
  • 286 View
  • 1 Download
AbstractAbstract PDF
In this study, we successfully synthesized a nano-sized lanthanum-modified lead-titanate (PLT) powder with a perovskite structure using a high-energy mechanochemical process (MCP). In addition, the sintering behavior of synthesized PLT nanopowder was investigated and the sintering temperature that can make the full dense PLT specimen decreased to below 1050°C by using Bi_2O_3 powder as sintering agent. The pure PLT phase of perovskite structure was formed after MCP was conducted for 4 h and the average size of the particles was approximately 20 nm. After sintered at 1050 and 1150°C, the relative density of PLT was about 93.84 and 95.78%, respectively. The density of PLT increased with adding Bi_2O_3 and the specimen with the relative densitiy over 96% were fabricated below 1050°C when 2 wt% of Bi_2O_3 was added.

Journal of Powder Materials : Journal of Powder Materials
TOP